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By Robert G. Ikissler and & p a r d  F. Taylor 

A previous analysis of turbulent f l o w  and heat transfer   for  air 
with variable  properties  flowing Fn smooth tubes is generalized in order 
t o  make it applicable  to  strpercritical water. The generalization is 
necessary  because all the pertinent  properties of supercrit ical  water 
vary markedly w i t h  terqerature. Calculated  velocity and  temperature 
distributions, as well as relations among Nusselt nuniber, Reynolds rmm- 
ber, and friction  factor,   are  presented. The effect  of m i a t i o n  of 
fluid  properties  across the tube on the Nusselt e e r  and f r i c t ion  
factor  correlations can be eliminated by  evaluating the properties at 
a reference temperature which ,is a function of both the wall temperature 
and the r a t io  of wall-to-bulk tenqeratures. R 

* 
INTRODUCTION 

An extension and generalization of the analysis for  air with vari- 
able  properties  given in reference I were made in  order t o  malce it appli- 
cable t o  s q e r c r i t i c a l  water. [The term "sugercritical water" designates 
water a t  pressures above the c r i t i c a l  pressure and tenqeratures near the 
c r i t i c a l  teqerature .I ~n important characterist ic of supercrit ical  
water, insofar as it affects heat transfer and f l o w ,  is the very large 
variation with temperature of its physical  properties  (specific heat, 
density,  viscosity, and thermal conductivity). Plots of the  variation 
of the property values of water with temgerature at a pressure of 
5000 pounds per square Fnch is given in  figures 1 and 2 for  data from 
references 2 t o  4. From these plots  it is evident that the radial 
variatfon of properties fo r  supercrit ical  water flowing i n  8 tube with 
heat transfer should have a considerable effect on the velocity and tem- 
peratee  dis t r ibut ions,  with a resultant  effect on the heat-transfer 
coefficients and f r ic t ion  factors .  

0 

" 
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Several  other  analyses of heat transfer  to  supercrit ical   water,  
which used assumptions  not made herein, have been made and are  
reported i n  reference 3. 

When the velocit ies and temperatures i n  a smooth tube  are t o  be 
obtained as functions of distance from the wall, the d i f fe ren t ia l  equa- 
t ions   for  shear stress and heat transfer may be written as follows: 

= p - +  PE- 
du du 
ay ay 

Equations (1) and (2) written in dimensionless  form become 

tions.  - The following assumptions are made in the use of 
(2) for  obtaining  velocity and  temperature distribu- 

t ions with heat transfer: 

(1) The eddy d i f fus iv i t i e s   fo r  rnamentum and heat t ransfer  E and 
&h are equal. Previous analyses for flow in  tubes  based on this assump- 
tion  yielded  heat-transfer  coefficients and f r ic t ion   fac tors  that agree 
with  experiment  except a t  low Peclet nurribers. A t  low Peclet nunibem the 
r a t i o  of eddy d s f u s i v i t i e s  appears t o  be a function of Peclet number 
(Pe = R e  Pr), but for Peclet nunibers above lO,OOO, which is the range of 
interest  for t h i s  analysis, the d i f fus iv i t ies  are nearly  equal (ref. 5) .  

(2) The expressions  for eddy diff’usivity that are found t o  apply t o  
flow of air  with  heat transfer with variable  properties {ref. 1) apply 
also t o   supe rc r i t i ca l  water. These expressions are 

e = n u y  2 
(5 1 
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- 
fo r  flow  close t o  the wall, and the K&&n relation 

E 
2 = x  

f o r  f low fa r  from the wall, where n and x are experimental  constants 
having the values 0.109 and 0.36, respectively. In the expression f o r  
f low close t o  the wall, the effect  of k-tic viscosity p/p on E 
has been neglected. A preliminary investigation  (not  reported  herein) 
Fndicates that neglect of this effect  of p/p causes a somewhat larger 
variation of Nusselt number with Prandtl n m r  than is indicated exper- 
imentally. 

(3) The variations of the shear stress 'c and the heat transfer 
per unit  area  q  across the tube have a negligible effect  on the veloc- 
i t y  and temgerature  distributions  (ref. 1, f ig .  1 2 )  . 

Flow c lose   to  wall. - For  obtahing the velocity and temperature 
distributions close t o  a smooth wan, the expression for  E from equa- 
t ion  {5) is substituked i n t o  equations (3) and (4) t o  give, in terms of 
the dbns ion le sa  pa-ters u+ and y+, 

L 

and 

. 

where assuqt ions (l), (21, and (3) have been used. 

By rearrangement,  equations (7) and (8) become 

duf = w+ 
" t - n u y  F P 2 + +  
Isg Po 

dt+ = w+ 
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and 

P/cto, P/PO, an i  +* 0 are f'unct ions of pt+. For  given values of 
to and p, equations (U) and (12) can be solved  simultaneously by 
i terat ion,  that is, assumed relations between u+ and y+ and between 
t+ and y+ are substi tuted  into the right-hand sides of the  equations 
and new values of us- and t+ are calculated by numerical  integration. 
These new values  are  then  substituted  into the right-hand  eides of th: 
equations and the process is repeatea until the values of u+ and t 
do not  chnge  appreciably.  Equations (U) and (12) give the r e h t i o n s  
among u', t+, and y+ for  various  values of the heat-transfer param- 
eter p for flow close to the wall. 

.. 

Flow at a distance from wall. - By use of assumptions (1) , (21, 
and (31, equations (3) and (4) become, f o r  flow a t  a distance from the 
wall, 
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a. 

I n  equations (13) and (141, the  molecular-shear-stress and heat-transfer 
.terms have been retained so that the slopes for the velocity and tenqer- 

yl+. From the analysis fo r  air  presented i n  reference I, it was found 
that yl+t which is the lowest  value of y+ fo r  ~ i c h  the  equations 
for f low at a distance from the wall applyt has a value of 1 6  when the 
molecular-shear-stress and heat-transfer terms are  retained.  Substitu- 

terms give 

- ature  distributions  close t o  and f a r  from the wall can be matched at 

cu %ion of v fo r  du+/dy+ in equation (13) and  rearrangement of the  

3 
CD 

dv dLl+ 

" - - x  v 

which written i n  integral form is 
+ 

nu 
v = v e exp - x  1 

Substitution of v f o r  du+/dy+ in  equation (14) and  rearrangement of 
the terms give 

" - dv - 
V 

Elimination of dv/v from equations (E) and (171, rearrangement, and 
integration  result i n  
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If relations among V, uf, and tf are assumed, equations (16) and 
(18) can be  solved s5miLtaneously by iteration.  After the relation 

among v, t+, and u+ is determined, the expression v = - d ~ +  or  
aY+ 

can be  Integrated, and y+ can  be calculated. 

Nusselt nunfber, Reynolds nuniber, and fr ic t ion  factor .  - By use of 
the definitions of the quantities involved, it can  be shown (see ref. 6)  
that with  the  fluid  properties evaluated at the wall temprature ,  the 
Nusselt number, Reynolds nurnber, and fr ic t ion  factor  are given by 

Reo = 2r0 % + +  

2 

ub 
+2 fo  = - 

where, f o r  variable cp and p ,  

rro+ 

and + 

co 
u) co 
R1 
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The relations between u+ y*, and tf are calculated fram equations (U), 
(121, (16) , (18) , and (19j - - 

The Nusselt nmiber, Reynolds n e ,  and f r ic t ion   fac tor  with the 
fluid  properties evalua;ted at the bulk tempra twe rather than a t  the 
wall temperature can be f o d  by us- the relat ion tb/to = 1 - p%*. 
Nusselt nmibers, Reynolds nmbers, and friction  factors  with  properties 

Physical  Properties 

The physical.  properties used in this analysis are shown in  figures 1 
and 2. All the  properties used were taken f r o m  tables and  equations 
given in  reference 2, with the exception of the  thermal conductivities 
and viscos i t ies   a t  the lower t apera tures  which were taken from refer- 
ence 4. Considerable uncertainty  exists in  the progerty  values of super- 
c r i t i c a l  water,  especially  for  viscosity and thermal conductivity, so 
that the  accuracy of the cnmputed results may be affected t o  scme extent 
by errors in those values. The discrepancies among the viscosity and 
conductivity  data  used  by  various Fnvestiga.tors are shown by the differ- 
ence between the solid and dashed l ines  in figure 2. 

- 
Predicted Temperature and Velocity  Distribution 

- 
The predicted  velocity Eand tenperature  distributions f o r  various 

values of $ f o r  a wall temperature of 1360° R and a pressure of 
5ooo pounds per  square  inch are shown fn figures 3 and 4, respectively. 
Since the molecular-shear-stress and heat-transfer terms were r e t ahed  
in equations (13)  and (14) fo r  flow a t  a distance from the wall, curves 
in  figures  3 and 4 were plotted us- yl+ equal t o  16 as was used Fn 
reference 1 f o r  air w h e n  the molecular-sheaz-stress and heat-transfer 
terms were retained. The peculiar  variation of the physical  properties 
of supercrit   ical  water  necessitates the calculation of velocity and tem- 
perature  distributions  for each wall temperature. In general, the mi- 
at ion  of the velocity  distributions is more  re- than that of the 
temgerature  distributions. The irregular m i a t i o n  of the temperature 
distribution is due to the unusual variation of specific heat  with tem- 
perature. In equation (18) the  specific heat appears in  the denamlnator. 

- 
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Nusselt Nurnbers 
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In figmes 5 and 6, the predicted  Nusselt numbers for  supercrit ical  
water are plotted  against Reynolds numbers fo r  various values af the 
heat-transfer parameter B fo r  a pressure of 5ooo pounds per  square 
inch and a wall temperature of 1360° R. 

Figure 5 shows the Nusselt nunibere plotted against the Reynolds 
numbers w i t h  a l l  the  physical  properties evaluated a t  the w a l l  tempera- 
ture. The Nusselt numbers and Reynolds numbers are calculated from 
equations (20) and C21). A t  a given Reynolds number, the Nusselt num- 
bers can be seen t o  increase i n  a complex  manner a0 B Fncreases. In  
figure 6, all the physical  properties in the Reynolds numbers and 
Nusselt numbers are evaluated at  the bulk temperature.. For a given 
Reynolds nlzniber, the Nusselt numbers decrease irregularly with an 
increase in p .  Because of the irregular variation of the Nusselt num- 
ber with p ,  no single reference temperature t, can be found for the 
evaluation of the physical  properties which w i l l  el-lmi.nate the effects 
of B . The effects  of B can be eliminated, however, by using a ref - 
erence temperature which is a function of both  the wall temperature and 
the r a t i o  of wall-to-bulk  temperature. In figure 7 the Nusselt numbers 
are plotted against the Reynolds numbers with the physical  properties, 
Fncluding density,  evaluated a t  the reference tempratwe for a pressure 
of 5000 pounds per square  inch and various wall temperatures. These axe 
the curves fo r  j3 = 0 fo r  the various wall temperatures and can be used 
for p # 0 by using the reference temperatures from figure 8, where 
x is plotted against the ra t io  of wall-to-buik temperature f o r  the 
various wall temperatures. The quantity x, which defines  the  reference 
temperature tx = x(tO - t+,) + h, is calculated from the curves i n  fig- 
ure 5 and the corresponding  curves for  other wall temperatures. A refer- 
ence temgerature can be selected  for each  point on the curves for  
p # 0 which brlngs the point t o  the j3 = 0 curve. The quantity x 
varies widely with  both wall temperature and r a t i o  of wall-to-bulk 
temgerature. 

The variation of the level of the curves fo r  Nusselt numbers 
plotted against Reynolds n h e r  in figure 7 is caused by the  variation 
in  Prandtl  nuuiber. These curves indicate that Nusselt n&er varies 
appraximately as Pro 0*55 f o r  the range of Prandtl numbers shown, 
whereas exgerimental data fo r  various  fluids  indicate a variation of 

Pr00'45.1 This difference is probably a result of neglecting the effect  
~ 'An examination of the data f o r  Prandtl nunibers in   the range  considered 
i n  this   report ,   for  example, in  references 7 and 8, indicates that an 
exponent of 0.45 f i ts  the data better than the cormonly used exponent 
0.4, which is an average fo r  a larger range of Prandtl nunibers than con- 
s idered here in. 
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- 
of kinematic  viscosity on t h e  eddy diffusivity  in  the  region  very  close 
t o   t h e  wall; this region becomes Fncreasingly  important as the  Prandtl 

recommended procedure is to calculate N s  by  multiplyfng the N s ' s  
fo r  a Prandtl number of 1 in figure 7 by the  correction  factor  Pro 
instead of using  the c u e a  for  various wall temperatures i n  figme 7 .  
The reference  temperature  for  evaluatingthe  properties in the Musselt 
and  Reynolds nmibers can be obtained from figure 8. 

- nmiber is increased. If a more accurate answer i s  desired,  the  present 

0.45 

As an  application of the  foregoing analysfs, wall Etnd bulk temper- 
atures  for  flow through a  0.25-inch  tube  with uniform heat  input were 
calculated and are shown in  figure 9. The bullr temperatures were obtained 
by sett ing  the t o t a l  heat transferred between the entrance and a given 
section  equal  to the change in  enthalpy of the  fluid  passing  the  section 
and determining  the teqerature change corresponding to the enthalpy 
change {constant  pressure) from the tables in  reference 2. The curves 
fo r  w a l l  and bulk  temperatures  are  nearly  parallel at the lower temper- 
atures. As the bulk temperature  approaches  the c r i t i c a l  temperature, 
the curves  separate  because of the  rapid  variation of physical  properties 
i n  that  region. The changes i n  slope of the  bulk-temperature  curve  are 
caused by the very  large Fncrease i n  specific  heat  with  temperature  in 
the  cr i t ical   region and the subsequent  decrease a t  higher  temperatures. 
The wall-temperature curve does not  follow the bulk-temperature  curve 
because the properties of the f lu id  change from those of a l iquid t o  
those of a gas in  passing  through the critical  region,  with a  consequent 
decrease in heat-transfer  coefficient. It should be mentioned that the 

the heat-transfer  coefficient because of the larger Prandtl nuufber i n  
that  region; however, that effect i s  more  than offset by the  reduction 

- increase in specific  heat  near  the  critical  temperature  tends to increase 

- in the  values of the  other  properties. 

Several  analyses which u t i l i z e   a s s w t i o m   o t h e r  than those made in  
the  present  analysis were made and are reported in  reference 3. Therein 
Goldman assumed that the curve of a plot  of u+ against y+ fo r  p =: 0 can 

be used for f l o w  with heat transfer if uf i s  redefined  as 

e r t ies   a re  used. Also, ElGod uti l ized  Prandtl 's  mixing-length 
theory and  a laminar layer   a t   the  wall. The results of these two 
analyses are i n  reasonable agreement, as shown in  reference 3. A com- 

Ifiost of the  difference in  calculated  heat  flux is caused by the differ- 
ence in  the  viscosit ies and thermal conductivities used cf i g  . 2) . The 

- parison between these analyses and the  present one is made in   f igure 10. 

- 
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curves Fn figure 10 calculated fran the present  analysis  and the prop- 
erties from reference 3 are  in  reasonable agreement with the analyses 
from reference 3. This agreement indicates that the calculated  heat 
transfer is insensi t ive  to  many of the assumptions made i n  the analysis. 

Friction  Factor 

The predicted  friction  factors  plotted against Reynolds numbers fo r  
various  values of the heat-transfer prameter p f o r  a pressure of 
5000 pounds per square inch  and a wall t-rature of B O o  R are  shown 
i n  figures ll and 12. 

In figure 11, all the physical  properties  in the fr ic t ion  factors  
and Reynolds numbers are evaluated a t  the wall temperature. For a given 
Reynolds number, an increase in the friction  factors  occurs with an 
increase  in p .  The friction  factors  plotted  against  Reynolds numbers 
w i t h  the  physical  properties evaluated at the  bulk  temperature  are shown 
i n  figure 1 2 .  A t  a given Reynolds nuniber, t h e  f r ic t ion  factors  can bc 
seen t o  decrease nonuniformly with an increase i n  p .  Since the f r ic t ion  
factors vary i n  a complex manner w i t h  p, no single  reference  temperature 
tx can be found for  the  evaluation of the physical  properties which will 
eliminate the effects  of p .  To el-te the e f fec ts  of p, a reference 
temperature which is a function of both the wall temperature  and  the 
r a t io  of wall-to-bulk  temperature must be used. With a l l  the  physical 
properties evaluated at this reference temgerature, the fr ic t ion  factors  
are plotted  against the Reynolds numbers i n  figure 13. A plot  of x 
agaFnst the r a t i o  of wall-to-bulk temperature f o r  the various wall tem- 
peratures, where x is der ined by t, = x(t0 - % 1 + $, is shown i n  
figure 14. The values of x were comptrted from the c u e s   i n  figure 1 2  
and the corresponding  curves for  other wal l  temperatures. There is a 
variation of x with w a l l  temperature and r a t i o  of wall-to-bulk temper- 
ature for  the  friction  factors,   but it is not so great as the variation 
f o r  the Nusselt mmibers. 

S W Y  OF RESULTS 

The following results were obtained from the analytical  investigation 
of turbulent  flow and heat t ransfer  of supercrit ical  water i n  smooth 
tubes : 

1. Heat addi t ion  to  the f lu id  caused a f la t tening of the velocity 
and temperature prof i les .  The variation of temperature  distribution 
with heat addition was complex because of the unusual variation of spe- 
cific  heat w i t h  temperature. 
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- 
2. The effects of variable  properties on the Husselt number and 

friction  factor  correlations were eliminated by evaluatbg the prop- 
e r t i e s  of the  Nusselt n M e r ,  Reynolds nmiber, and f r i c t ion  factor a t  
reference  temgeratures which are functiorm of both wall taprature and 
ra t io  of wall-to-bulk temgerature. 

.. 
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The following symbols are used i n  this   report :  

C P specific  heat of f lu id  a t  constant  pressure,  Btu/(lb) (9) 

C specific  heat of f l u id  at constant  pressure  evaluated a t  to, 
'j0 Btu/(lb) (OF> 

D inside  diameter  of  tube, f t  

e base of natural logarithms 

Q acceleration due t o  gravity, 32.2 f t /sec 2 

h heat-transfer  coefficient, s, Btu/{sec) {sq f t )  ( O F )  

k thermal  conductivity of fluid,  Btu/(sec> {sq f t )  (?F/ft) 

kb thermal  conductivity of fluid  evaluated a t  %, 

- tb' 

Btu/(sec)(sq ft)(?F/ft) 

% thermal conductivity of fluid  evaluated at to, 
Btu/(sec)  (sq f t )  (?F/ft) 

Isc thermal  conductivit of f l u id  evaluated a t  t,, 
Btu/(sec 1 (sq f t  1 (%/ft 1 

n constant 

P static  pressure,  l.b/sq f t  abs 

c l  rate of heat transfer toward tube  center  per unit area, 
Btu/(sec)(sq f t )  

so r a t e  of heat tmnsfer a t  inside wall toward tube  center  per 
unit  area,  Btu/(sec)[sq f t )  

rO 

t absolute  static temperature, % 

inside  tube radius, f t  

absolute wall teqperature, ?R 

'b bulk o r  average s t a t i c  temperature of f lu id  a t  cross  section of 
tube, ?R 

tx film temperature,  x(tO - h) + h, 4( 
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- 
U 

I 

ub 

X 

Y 

N e 
a, cn 
(D e h 

x 

PX 

'0 

t ime-average  velocity  parallel   to axis of tube,  ft/sec 

bulk o r  average  velocity a t  cross section of tube,  ft/sec 

number used in evaluating  arbitrary  temperature in tube, tx 

distance from tube wall, ft 
coefficient of eddy a m m t y  f o r  momentum, sq f t /sec 

coefficient of eddy d i f fus   iv i ty   for  k a t ,  sq  f%/sec 

d & n  constant 

absolute  viscosity of f luid,   ( lb)(sec)/sq f t  

absolute  viscosity of f lu id  evaluated at "0, (lb){sec)/sq f t  

absolute  viscosity of f l u i d  evaluated a t  to, (lb)(sec)/sq f t  

absolute  viscosity of f lu id   eva lua ted   a t  t,, {lb)(sec)/sq f t  

mass density,  (lb)(sec2)/ft4 

bulk or average  density at cross  section of tube, (lb)(sec2)/ft4 

mass density of f luid at wall, (lb)(sec2)/ft4 

density of f luid  evaluated at  tx, (lb)(sec2)/ft4 

shear stress in fluid,   lb/sq ft 

shear stress in f l u i d  at wall, lb/sq ft 

Subscripts : 

fr on friction-pressure  gradient 

D i m e n s  ionless groups : * ,  

B heat -tramf er parameter, %VWO 
=p, ogtoto 

. D(dP/dAfr 

fO friction  factor  with  density  evaluated a t  to, - 2po Ub 
- =0 

2 -  2 
ub 
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*b 

f X  

Nu0 

prub 

N u x  

Pe 

Pr 

Pro 

Re 

Reb 

Rex 

+ 
rO 

t+ 

t1+ 

%+ 

U + 

2T0 

2=0 

f r ic t ion   fac tor  w i t h  density evaluated at t,,, 2 
pb ub 

f r ic t ion   fac tor  w i t h  density  evaluated at t,, 2 
px ub 

Nusselt number 

Nusselt number 

Nusselt number 

Peclet number 

Prandtl nmiber 

Prandtl number 

with thermal conductivity evaluated at to, 

with thermal conductivity evaluated a t  h, - hD 

with thermal conductivity  evaluated at t,, g hD 

bD 

kb 

with properties  evaluated at wall, cp, bg/kg 

Reynolds number 

Reynolds number with density and viscosity evaluated a t  to, 
PO%D 

Reynolds number with density and viscosity  evaluated a t  $, 
PbubD 

%I 

Reynolds number with  density and viscosity  evaluated at tx, 
%UbD 

PX r ,  

V V P O  
clo/po ro tube-radius parameter, 

value of t+ at  y1 + 

hulk-temperatme parameter, 

u 
velocity parameter, 

- 

3 
N 

. 
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c Ub 
ub+ bulk  velocity parameter, . 457G 
u1 + value of u+ a t  yl + 

du+ 
V - 

dY+ 

N 
03 

V value  of v a t  yl + 
1 

yl+ value of y+ at intersection of curves fo r  flow close  to  wall 
and a t  8 distance fmm wall 
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Temperature, ?F T 
Figure 1. - Variation of density and specific heat of  water with t,ernperature. 

Freesure, 5000 pounds per aquare inch. D a t a  obtained from references 2 
and 4. 
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.. 
X 

400 500 600 700 800 900 lo00 1100 1200 w 
Temperature, ?F 

Figure 2. - Variation of thennal conductivity and viscosity of water with tempera- 
ture.  F-resaure, 5000 pounds per =&e inch. 
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F l g ~ m  5. - Predicted varlatiaa of Nuseelt number with Reynolda number for fluw of s u p e r c r i t i c a l  
water with heat addition and p r o p e r t i e s  evaluated at wall temperature. Pressure, 5000 pounds 
per square inch; wall temperature, 1360' R.  
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Flgure 6. - Fredlcted  variation of Nueselt number with Reynolds number f o r  flow of supercr i t ical  
water with  heat  addition and properties  evaluatea  at bulk temperature. Pressure, 5000 pounds 
per square inch;  wall  temperature, 1360' R. 
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Figure 7 .  - Predicted variation of Nusselt number with Reynolds number for flaw of euperaritlcal 
water  with  heat  addition and proparties evaluated at referenae temperature. F’reeam, 
5000 pounds per aquare inch. 
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F U w w  8 .  - Variation of x an &fined by $ - x(tO - %) + $ wlth wall teaperatwe and r a t i o  of uall-to-bUk tamperatme ror deferaturtlon 
Of reference taqmratures for me rith I n a s l t  number curv~n in f1glll.e 7. Presnure, 5ooo m d n  par aquare  Inch. 
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Flgars 9. - Predicted varistlcm of wall and bulk temperatures for flow through 0.25-inch tube 
with  constant  heat input ueing c m a  ln figurs 7. Heat input, 575 Btn per eecond per 
squara foot; might flow, 0.0198 pound per second; presem, 5000 pounds per quare inch. 
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Figure 10. - Cmparison of  heat flux predicted by reference 3 and i n  present 
analgsie fo r  wall temperatures of 1260' and 1460° R. Tube diameter, 
0.00521 foot; weight flow, 0.0118 pound per second; pressure, 5000 pounds 
per square inch. 
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Figure 11. - Predicted mrrlatlcm of frlotlon factor wlth Reynolds number f o r  flow of aupercr l t lcal  
vat= x i th  heat addition and propertiee evaluated a t  wall temperature. &eSeu.z-e, 5030 
per square inch; d l  temperature, l3W0 R. 
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FTgure 12. - Predicted variation o f  f r ic t ion factor with Reynolds number for flow of eupercrltical 
water with heat addit lm and properties evaluated a t  bulk temperature. Pressure, 5000  pound^ 
per 8quare inch; wall temperature, 1360' R,  
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Figure 13. - Predicted variaticm of fricticm  factor  with Reynolde number for flow of supercritical 
water wlth heat  addition and properbiee evaluated at reference temperature. 
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Plgure 14. - Variation of x a8  defined by tx I x ( t O  - $) + tb with  wall  temperatwe and ratio of wall-to-bulk temperature for dctermlnation 
of reference temperatures for use nl th  frlat lon factor ourves i n  figure 13. Paemure, 5000 pounds per square Inah. 
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